Regularity of viscosity solutions of the σk$\sigma _k$‐Loewner–Nirenberg problem
نویسندگان
چکیده
We study the regularity of viscosity solution u $u$ σ k $\sigma _k$ -Loewner–Nirenberg problem on a bounded smooth domain Ω ⊂ R n $\Omega \subset \mathbb {R}^n$ for ⩾ 2 $k \geqslant 2$ . It was known that is locally Lipschitz in $\Omega$ prove that, with d $d$ being distance function to ∂ $\partial \Omega$ and δ > 0 $\delta 0$ sufficiently small, { < ( x ) } $\lbrace d(x) \delta \rbrace$ first − 1 $(n-1)$ derivatives $d^{\frac{n-2}{2}} u$ are Hölder continuous ⩽ \leqslant Moreover, we identify boundary invariant which polynomial principal curvatures its covariant vanishes if only Using relation between Schouten tensor ambient manifold mean curvature submanifold related tools from geometric measure theory, further when contains more than one connected components, not differentiable
منابع مشابه
the problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولBoundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations
We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C1,α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C2,α on the b...
متن کاملRegularity for Viscosity Solutions of Fully Nonlinear Equations
It is well known that viscosity solutions of (1.1) are C for some 0 < α < 1, and in the case that the functional F is convex, they are C. In this paper we use the Krylov-Safonov Harnack inequality, Jensen’s approximate solutions and some basic lemmas of real analysis to give new and simpler proofs of these results. In (1.1), u is a real function defined in a bounded domain Ω of R and Du denotes...
متن کاملRegularity of Solutions to a Contact Problem
We consider a variational inequality for the Lamé system which models an elastic body in contact with a rigid foundation. We give conditions on the domain and the contact set which allow us to prove regularity of solutions to the variational inequality. In particular, we show that the gradient of the solution is a square integrable function on the boundary.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of The London Mathematical Society
سال: 2023
ISSN: ['1460-244X', '0024-6115', '1234-5678']
DOI: https://doi.org/10.1112/plms.12536